Time Series Analysis with Python Cookbook

Time Series Analysis with Python Cookbook
Author :
Publisher : Packt Publishing Ltd
Total Pages : 630
Release :
ISBN-10 : 9781801071260
ISBN-13 : 1801071268
Rating : 4/5 (268 Downloads)

Book Synopsis Time Series Analysis with Python Cookbook by : Tarek A. Atwan

Download or read book Time Series Analysis with Python Cookbook written by Tarek A. Atwan and published by Packt Publishing Ltd. This book was released on 2022-06-30 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perform time series analysis and forecasting confidently with this Python code bank and reference manual Key Features • Explore forecasting and anomaly detection techniques using statistical, machine learning, and deep learning algorithms • Learn different techniques for evaluating, diagnosing, and optimizing your models • Work with a variety of complex data with trends, multiple seasonal patterns, and irregularities Book Description Time series data is everywhere, available at a high frequency and volume. It is complex and can contain noise, irregularities, and multiple patterns, making it crucial to be well-versed with the techniques covered in this book for data preparation, analysis, and forecasting. This book covers practical techniques for working with time series data, starting with ingesting time series data from various sources and formats, whether in private cloud storage, relational databases, non-relational databases, or specialized time series databases such as InfluxDB. Next, you'll learn strategies for handling missing data, dealing with time zones and custom business days, and detecting anomalies using intuitive statistical methods, followed by more advanced unsupervised ML models. The book will also explore forecasting using classical statistical models such as Holt-Winters, SARIMA, and VAR. The recipes will present practical techniques for handling non-stationary data, using power transforms, ACF and PACF plots, and decomposing time series data with multiple seasonal patterns. Later, you'll work with ML and DL models using TensorFlow and PyTorch. Finally, you'll learn how to evaluate, compare, optimize models, and more using the recipes covered in the book. What you will learn • Understand what makes time series data different from other data • Apply various imputation and interpolation strategies for missing data • Implement different models for univariate and multivariate time series • Use different deep learning libraries such as TensorFlow, Keras, and PyTorch • Plot interactive time series visualizations using hvPlot • Explore state-space models and the unobserved components model (UCM) • Detect anomalies using statistical and machine learning methods • Forecast complex time series with multiple seasonal patterns Who this book is for This book is for data analysts, business analysts, data scientists, data engineers, or Python developers who want practical Python recipes for time series analysis and forecasting techniques. Fundamental knowledge of Python programming is required. Although having a basic math and statistics background will be beneficial, it is not necessary. Prior experience working with time series data to solve business problems will also help you to better utilize and apply the different recipes in this book.


Time Series Analysis with Python Cookbook Related Books

Time Series Analysis with Python Cookbook
Language: en
Pages: 630
Authors: Tarek A. Atwan
Categories: Computers
Type: BOOK - Published: 2022-06-30 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Perform time series analysis and forecasting confidently with this Python code bank and reference manual Key Features • Explore forecasting and anomaly detect
Hands-on Time Series Analysis with Python
Language: en
Pages: 407
Authors: B V Vishwas
Categories: Computers
Type: BOOK - Published: 2020-08-25 - Publisher: Apress

DOWNLOAD EBOOK

Learn the concepts of time series from traditional to bleeding-edge techniques. This book uses comprehensive examples to clearly illustrate statistical approach
Machine Learning for Time-Series with Python
Language: en
Pages: 371
Authors: Ben Auffarth
Categories: Computers
Type: BOOK - Published: 2021-10-29 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Get better insights from time-series data and become proficient in model performance analysis Key FeaturesExplore popular and modern machine learning methods in
Pandas Cookbook
Language: en
Pages: 534
Authors: Theodore Petrou
Categories: Computers
Type: BOOK - Published: 2017-10-23 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Over 95 hands-on recipes to leverage the power of pandas for efficient scientific computation and data analysis About This Book Use the power of pandas to solve
Python for Finance Cookbook
Language: en
Pages: 426
Authors: Eryk Lewinson
Categories: Computers
Type: BOOK - Published: 2020-01-31 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Solve common and not-so-common financial problems using Python libraries such as NumPy, SciPy, and pandas Key FeaturesUse powerful Python libraries such as pand