Proofs of the Cantor-Bernstein Theorem
Author | : Arie Hinkis |
Publisher | : Springer Science & Business Media |
Total Pages | : 428 |
Release | : 2013-02-26 |
ISBN-10 | : 9783034802246 |
ISBN-13 | : 3034802242 |
Rating | : 4/5 (242 Downloads) |
Download or read book Proofs of the Cantor-Bernstein Theorem written by Arie Hinkis and published by Springer Science & Business Media. This book was released on 2013-02-26 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an excursion through the developmental area of research mathematics. It presents some 40 papers, published between the 1870s and the 1970s, on proofs of the Cantor-Bernstein theorem and the related Bernstein division theorem. While the emphasis is placed on providing accurate proofs, similar to the originals, the discussion is broadened to include aspects that pertain to the methodology of the development of mathematics and to the philosophy of mathematics. Works of prominent mathematicians and logicians are reviewed, including Cantor, Dedekind, Schröder, Bernstein, Borel, Zermelo, Poincaré, Russell, Peano, the Königs, Hausdorff, Sierpinski, Tarski, Banach, Brouwer and several others mainly of the Polish and the Dutch schools. In its attempt to present a diachronic narrative of one mathematical topic, the book resembles Lakatos’ celebrated book Proofs and Refutations. Indeed, some of the observations made by Lakatos are corroborated herein. The analogy between the two books is clearly anything but superficial, as the present book also offers new theoretical insights into the methodology of the development of mathematics (proof-processing), with implications for the historiography of mathematics.