New Developments in Statistical Information Theory Based on Entropy and Divergence Measures
Author | : Leandro Pardo |
Publisher | : MDPI |
Total Pages | : 344 |
Release | : 2019-05-20 |
ISBN-10 | : 9783038979364 |
ISBN-13 | : 3038979368 |
Rating | : 4/5 (368 Downloads) |
Download or read book New Developments in Statistical Information Theory Based on Entropy and Divergence Measures written by Leandro Pardo and published by MDPI. This book was released on 2019-05-20 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents new and original research in Statistical Information Theory, based on minimum divergence estimators and test statistics, from a theoretical and applied point of view, for different statistical problems with special emphasis on efficiency and robustness. Divergence statistics, based on maximum likelihood estimators, as well as Wald’s statistics, likelihood ratio statistics and Rao’s score statistics, share several optimum asymptotic properties, but are highly non-robust in cases of model misspecification under the presence of outlying observations. It is well-known that a small deviation from the underlying assumptions on the model can have drastic effect on the performance of these classical tests. Specifically, this book presents a robust version of the classical Wald statistical test, for testing simple and composite null hypotheses for general parametric models, based on minimum divergence estimators.