Lecture Notes On Knot Invariants

Lecture Notes On Knot Invariants
Author :
Publisher : World Scientific
Total Pages : 245
Release :
ISBN-10 : 9789814675987
ISBN-13 : 9814675989
Rating : 4/5 (989 Downloads)

Book Synopsis Lecture Notes On Knot Invariants by : Weiping Li

Download or read book Lecture Notes On Knot Invariants written by Weiping Li and published by World Scientific. This book was released on 2015-08-21 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volume is focused on the basic calculation skills of various knot invariants defined from topology and geometry. It presents the detailed Hecke algebra and braid representation to illustrate the original Jones polynomial (rather than the algebraic formal definition many other books and research articles use) and provides self-contained proofs of the Tait conjecture (one of the big achievements from the Jones invariant). It also presents explicit computations to the Casson-Lin invariant via braid representations.With the approach of an explicit computational point of view on knot invariants, this user-friendly volume will benefit readers to easily understand low-dimensional topology from examples and computations, rather than only knowing terminologies and theorems.


Lecture Notes On Knot Invariants Related Books

Lecture Notes On Knot Invariants
Language: en
Pages: 245
Authors: Weiping Li
Categories: Mathematics
Type: BOOK - Published: 2015-08-21 - Publisher: World Scientific

DOWNLOAD EBOOK

The volume is focused on the basic calculation skills of various knot invariants defined from topology and geometry. It presents the detailed Hecke algebra and
Introduction to Vassiliev Knot Invariants
Language: en
Pages: 521
Authors: S. Chmutov
Categories: Mathematics
Type: BOOK - Published: 2012-05-24 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

A detailed exposition of the theory with an emphasis on its combinatorial aspects.
Introductory Lectures on Knot Theory
Language: en
Pages: 577
Authors: Louis H. Kauffman
Categories: Mathematics
Type: BOOK - Published: 2012 - Publisher: World Scientific

DOWNLOAD EBOOK

More recently, Khovanov introduced link homology as a generalization of the Jones polynomial to homology of chain complexes and Ozsvath and Szabo developed Heeg
The Knot Book
Language: en
Pages: 330
Authors: Colin Conrad Adams
Categories: Mathematics
Type: BOOK - Published: 2004 - Publisher: American Mathematical Soc.

DOWNLOAD EBOOK

Knots are familiar objects. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. This work offers an introduction to thi
Knot Theory and Its Applications
Language: en
Pages: 348
Authors: Kunio Murasugi
Categories: Mathematics
Type: BOOK - Published: 2009-12-29 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

This book introduces the study of knots, providing insights into recent applications in DNA research and graph theory. It sets forth fundamental facts such as k