Integrating Meta-Heuristics and Machine Learning for Real-World Optimization Problems

Integrating Meta-Heuristics and Machine Learning for Real-World Optimization Problems
Author :
Publisher : Springer Nature
Total Pages : 501
Release :
ISBN-10 : 9783030990794
ISBN-13 : 3030990796
Rating : 4/5 (796 Downloads)

Book Synopsis Integrating Meta-Heuristics and Machine Learning for Real-World Optimization Problems by : Essam Halim Houssein

Download or read book Integrating Meta-Heuristics and Machine Learning for Real-World Optimization Problems written by Essam Halim Houssein and published by Springer Nature. This book was released on 2022-06-04 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects different methodologies that permit metaheuristics and machine learning to solve real-world problems. This book has exciting chapters that employ evolutionary and swarm optimization tools combined with machine learning techniques. The fields of applications are from distribution systems until medical diagnosis, and they are also included different surveys and literature reviews that will enrich the reader. Besides, cutting-edge methods such as neuroevolutionary and IoT implementations are presented in some chapters. In this sense, the book provides theory and practical content with novel machine learning and metaheuristic algorithms. The chapters were compiled using a scientific perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics and can be used in courses on Artificial Intelligence, Advanced Machine Learning, among others. Likewise, the material can be helpful for research from the evolutionary computation, artificial intelligence communities.


Integrating Meta-Heuristics and Machine Learning for Real-World Optimization Problems Related Books