Geometric Numerical Integration and Schrödinger Equations
Author | : Erwan Faou |
Publisher | : European Mathematical Society |
Total Pages | : 152 |
Release | : 2012 |
ISBN-10 | : 3037191007 |
ISBN-13 | : 9783037191002 |
Rating | : 4/5 (002 Downloads) |
Download or read book Geometric Numerical Integration and Schrödinger Equations written by Erwan Faou and published by European Mathematical Society. This book was released on 2012 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of geometric numerical integration is the simulation of evolution equations possessing geometric properties over long periods of time. Of particular importance are Hamiltonian partial differential equations typically arising in application fields such as quantum mechanics or wave propagation phenomena. They exhibit many important dynamical features such as energy preservation and conservation of adiabatic invariants over long periods of time. In this setting, a natural question is how and to which extent the reproduction of such long-time qualitative behavior can be ensured by numerical schemes. Starting from numerical examples, these notes provide a detailed analysis of the Schrodinger equation in a simple setting (periodic boundary conditions, polynomial nonlinearities) approximated by symplectic splitting methods. Analysis of stability and instability phenomena induced by space and time discretization are given, and rigorous mathematical explanations are provided for them. The book grew out of a graduate-level course and is of interest to researchers and students seeking an introduction to the subject matter.