Essential Statistics for Non-STEM Data Analysts

Essential Statistics for Non-STEM Data Analysts
Author :
Publisher : Packt Publishing Ltd
Total Pages : 393
Release :
ISBN-10 : 9781838987565
ISBN-13 : 1838987568
Rating : 4/5 (568 Downloads)

Book Synopsis Essential Statistics for Non-STEM Data Analysts by : Rongpeng Li

Download or read book Essential Statistics for Non-STEM Data Analysts written by Rongpeng Li and published by Packt Publishing Ltd. This book was released on 2020-11-12 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reinforce your understanding of data science and data analysis from a statistical perspective to extract meaningful insights from your data using Python programming Key FeaturesWork your way through the entire data analysis pipeline with statistics concerns in mind to make reasonable decisionsUnderstand how various data science algorithms functionBuild a solid foundation in statistics for data science and machine learning using Python-based examplesBook Description Statistics remain the backbone of modern analysis tasks, helping you to interpret the results produced by data science pipelines. This book is a detailed guide covering the math and various statistical methods required for undertaking data science tasks. The book starts by showing you how to preprocess data and inspect distributions and correlations from a statistical perspective. You’ll then get to grips with the fundamentals of statistical analysis and apply its concepts to real-world datasets. As you advance, you’ll find out how statistical concepts emerge from different stages of data science pipelines, understand the summary of datasets in the language of statistics, and use it to build a solid foundation for robust data products such as explanatory models and predictive models. Once you’ve uncovered the working mechanism of data science algorithms, you’ll cover essential concepts for efficient data collection, cleaning, mining, visualization, and analysis. Finally, you’ll implement statistical methods in key machine learning tasks such as classification, regression, tree-based methods, and ensemble learning. By the end of this Essential Statistics for Non-STEM Data Analysts book, you’ll have learned how to build and present a self-contained, statistics-backed data product to meet your business goals. What you will learnFind out how to grab and load data into an analysis environmentPerform descriptive analysis to extract meaningful summaries from dataDiscover probability, parameter estimation, hypothesis tests, and experiment design best practicesGet to grips with resampling and bootstrapping in PythonDelve into statistical tests with variance analysis, time series analysis, and A/B test examplesUnderstand the statistics behind popular machine learning algorithmsAnswer questions on statistics for data scientist interviewsWho this book is for This book is an entry-level guide for data science enthusiasts, data analysts, and anyone starting out in the field of data science and looking to learn the essential statistical concepts with the help of simple explanations and examples. If you’re a developer or student with a non-mathematical background, you’ll find this book useful. Working knowledge of the Python programming language is required.


Essential Statistics for Non-STEM Data Analysts Related Books

Essential Statistics for Non-STEM Data Analysts
Language: en
Pages: 393
Authors: Rongpeng Li
Categories: Computers
Type: BOOK - Published: 2020-11-12 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Reinforce your understanding of data science and data analysis from a statistical perspective to extract meaningful insights from your data using Python program
Data Analytics for Marketing
Language: en
Pages: 452
Authors: Guilherme Diaz-Bérrio
Categories: Computers
Type: BOOK - Published: 2024-05-10 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Conduct data-driven marketing research and analysis with hands-on examples using Python by leveraging open-source tools and libraries Key Features Analyze marke
Python Data Analysis
Language: en
Pages: 463
Authors: Avinash Navlani
Categories: Computers
Type: BOOK - Published: 2021-02-05 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Understand data analysis pipelines using machine learning algorithms and techniques with this practical guide Key FeaturesPrepare and clean your data to use it
Statistical Data Analysis
Language: en
Pages: 218
Authors: Glen Cowan
Categories: Mathematics
Type: BOOK - Published: 1998 - Publisher: Oxford University Press

DOWNLOAD EBOOK

This book is a guide to the practical application of statistics in data analysis as typically encountered in the physical sciences. It is primarily addressed at
Data Analytics and Adaptive Learning
Language: en
Pages: 364
Authors: Patsy D. Moskal
Categories: Education
Type: BOOK - Published: 2023-08-25 - Publisher: Taylor & Francis

DOWNLOAD EBOOK

Data Analytics and Adaptive Learning offers new insights into the use of emerging data analysis and adaptive techniques in multiple learning settings. In recent