Crop Modeling to Assess the Impact of Climate Change on Spring Wheat Growth in Sub-Arctic Alaska

Crop Modeling to Assess the Impact of Climate Change on Spring Wheat Growth in Sub-Arctic Alaska
Author :
Publisher :
Total Pages : 160
Release :
ISBN-10 : OCLC:1101191622
ISBN-13 :
Rating : 4/5 ( Downloads)

Book Synopsis Crop Modeling to Assess the Impact of Climate Change on Spring Wheat Growth in Sub-Arctic Alaska by : Stephen K. Harvey

Download or read book Crop Modeling to Assess the Impact of Climate Change on Spring Wheat Growth in Sub-Arctic Alaska written by Stephen K. Harvey and published by . This book was released on 2019 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the sub-arctic region of Interior Alaska, warmer temperatures and a longer growing season caused by climate change could make spring wheat (Triticum aestivum L.) a more viable crop. In this study, a crop model was utilized to simulate the growth of spring wheat in future climate change scenarios RCP4.5 (medium-low emission) and RCP8.5 (high emission) of Fairbanks, Alaska. In order to fulfill such simulation, in 2018 high quality crop growth datasets were collected at the Fairbanks and Matanuska Valley Experiment Farms and along with historic variety trial data, the crop model was calibrated and validated for simulating days to maturity (emergence to physiological maturity) and yield of spring wheat in Fairbanks. In the Fairbanks 1989-2018 (baseline) climate, growing season (planting to physiological maturity) average temperature and total precipitation are 15.6° C and 122 mm, respectively. In RCP4.5 2020-2049 (2035s), 2050-2079 (2065s), and 2080-2099 (2090s) projected growing season average temperature and total precipitation are 16.7° C, 17.4° C, 17.8° C and 120 mm, 112 mm, 112 mm, respectively. In RCP8.5 2035s, 2065s, and 2090s projected growing season average temperature and total precipitation are 16.8° C, 18.5° C, 19.5° C and 120 mm, 113 mm, 117 mm, respectively. Using Ingal, an Alaskan spring wheat, the model simulated days to maturity and yield in baseline and projected climate scenarios of Fairbanks, Alaska. Baseline days to maturity were 69 and yield was 1991 kg ha-1. In RCP4.5 2035s, 2065s, and 2090s days to maturity decreased to 64, 62, 60 days, respectively, and yield decreased 2%, 6%, 8%, respectively. In RCP8.5 2035s, 2065s, and 2090s days to maturity decreased to 64, 58, 55 days, respectively, and yield decreased 1%, 3%, then increased 1%, respectively. Adaptation by cultivar modification to have a growing degree day requirement of 68 days to maturity in RCP4.5 2035s and RCP8.5 2035s resulted in increased yields of 4% and 5%, respectively. Climatic parameters of temperature and precipitation per growing season day are projected to become more favorable to the growth of spring wheat. However, precipitation deficit, an indicator of water stress was found to stay similar to the baseline climate. Without adaption, days to maturity and yield are projected to decrease. Selection and/or breeding of spring wheat varieties to maintain baseline days to maturity are a priority to materialize yield increases in the area of Fairbanks, Alaska.


Crop Modeling to Assess the Impact of Climate Change on Spring Wheat Growth in Sub-Arctic Alaska Related Books

Crop Modeling to Assess the Impact of Climate Change on Spring Wheat Growth in Sub-Arctic Alaska
Language: en
Pages: 160
Authors: Stephen K. Harvey
Categories: Wheat
Type: BOOK - Published: 2019 - Publisher:

DOWNLOAD EBOOK

In the sub-arctic region of Interior Alaska, warmer temperatures and a longer growing season caused by climate change could make spring wheat (Triticum aestivum
Climate Change Impacts and Mitigation on Wheat System in Pacific Northwest
Language: en
Pages: 130
Authors: Tina Karimi
Categories:
Type: BOOK - Published: 2017 - Publisher:

DOWNLOAD EBOOK

The results indicated that regional dryland wheat production will increase in the future, but with spatial variation and uncertainty related to future weather p
Arctic Climate Impact Assessment - Scientific Report
Language: en
Pages: 1053
Authors: Arctic Climate Impact Assessment
Categories: Science
Type: BOOK - Published: 2005-11-07 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

The Arctic is now experiencing some of the most rapid and severe climate change on earth. Over the next 100 years, climate change is expected to accelerate, con
Proceedings of the Workshop on Modeling Wheat Response to High Temperature; El Batan, Texcoco, Mexico; 19-21 Jun 2013
Language: en
Pages: 142
Authors: Alderman, P.D.
Categories:
Type: BOOK - Published: 2014-01-20 - Publisher: CIMMYT

DOWNLOAD EBOOK

Modeling of Wheat Growth and Yield Under the Expected Climate Change
Language: en
Pages: 196
Authors: Mona Maze
Categories:
Type: BOOK - Published: 2013 - Publisher: Sudwestdeutscher Verlag Fur Hochschulschriften AG

DOWNLOAD EBOOK

The purpose of this study was to develop a new crop simulation model that simulated the crop biomass and yield of winter wheat from accumulated thermal units an