The Validity of Classical Nucleation Theory and Its Application to Dislocation Nucleation

The Validity of Classical Nucleation Theory and Its Application to Dislocation Nucleation
Author :
Publisher : Stanford University
Total Pages : 240
Release :
ISBN-10 : STANFORD:rx036ms4124
ISBN-13 :
Rating : 4/5 ( Downloads)

Book Synopsis The Validity of Classical Nucleation Theory and Its Application to Dislocation Nucleation by : Seunghwa Ryu

Download or read book The Validity of Classical Nucleation Theory and Its Application to Dislocation Nucleation written by Seunghwa Ryu and published by Stanford University. This book was released on 2011 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nucleation has been the subject of intense research because it plays an important role in the dynamics of most first-order phase transitions. The standard theory to describe the nucleation phenomena is the classical nucleation theory (CNT) because it correctly captures the qualitative features of the nucleation process. However potential problems with CNT have been suggested by previous studies. We systematically test the individual components of CNT by computer simulations of the Ising model and find that it accurately predicts the nucleation rate if the correct droplet free energy computed by umbrella sampling is provided as input. This validates the fundamental assumption of CNT that the system can be coarse grained into a one dimensional Markov chain with the largest droplet size as the reaction coordinate. Employing similar simulation techniques, we study the dislocation nucleation which is essential to our understanding of plastic deformation, ductility, and mechanical strength of crystalline materials. We show that dislocation nucleation rates can be accurately predicted over a wide range of conditions using CNT with the activation free energy determined by umbrella sampling. Our data reveal very large activation entropies, which contribute a multiplicative factor of many orders of magnitude to the nucleation rate. The activation entropy at constant strain is caused by thermal expansion, with negligible contribution from the vibrational entropy. The activation entropy at constant stress is significantly larger than that at constant strain, as a result of thermal softening. The large activation entropies are caused by anharmonic effects, showing the limitations of the harmonic approximation widely used for rate estimation in solids. Similar behaviors are expected to occur in other nucleation processes in solids.


The Validity of Classical Nucleation Theory and Its Application to Dislocation Nucleation Related Books

The Validity of Classical Nucleation Theory and Its Application to Dislocation Nucleation
Language: en
Pages: 240
Authors: Seunghwa Ryu
Categories:
Type: BOOK - Published: 2011 - Publisher: Stanford University

DOWNLOAD EBOOK

Nucleation has been the subject of intense research because it plays an important role in the dynamics of most first-order phase transitions. The standard theor
Nucleation Theory and Applications
Language: en
Pages: 472
Authors: Jürn W. P. Schmelzer
Categories: Technology & Engineering
Type: BOOK - Published: 2006-03-06 - Publisher: John Wiley & Sons

DOWNLOAD EBOOK

An overview of recent developments in the field of first-order phase transitions, which may be considered a continuation of the previous work 'Aggregation Pheno
Nucleation in Condensed Matter
Language: en
Pages: 759
Authors: Ken Kelton
Categories: Technology & Engineering
Type: BOOK - Published: 2010-03-19 - Publisher: Elsevier

DOWNLOAD EBOOK

In Nucleation in Condensed Matter, key theoretical models for nucleation are developed and experimental data are used to discuss their range of validity. A cent
Proceedings of the International Conference on Martensitic Transformations
Language: en
Pages: 816
Authors:
Categories: Crystallography
Type: BOOK - Published: 1979 - Publisher:

DOWNLOAD EBOOK

Nucleation Theory and Growth of Nanostructures
Language: en
Pages: 610
Authors: Vladimir G. Dubrovskii
Categories: Science
Type: BOOK - Published: 2013-12-04 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

Semiconductor nanostructures such as nanowires are promising building blocks of future nanoelectronic, nanophotonic and nanosensing devices. Their physical prop