Statistical Regression and Classification

Statistical Regression and Classification
Author :
Publisher : CRC Press
Total Pages : 439
Release :
ISBN-10 : 9781351645898
ISBN-13 : 1351645897
Rating : 4/5 (897 Downloads)

Book Synopsis Statistical Regression and Classification by : Norman Matloff

Download or read book Statistical Regression and Classification written by Norman Matloff and published by CRC Press. This book was released on 2017-09-19 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Regression and Classification: From Linear Models to Machine Learning takes an innovative look at the traditional statistical regression course, presenting a contemporary treatment in line with today's applications and users. The text takes a modern look at regression: * A thorough treatment of classical linear and generalized linear models, supplemented with introductory material on machine learning methods. * Since classification is the focus of many contemporary applications, the book covers this topic in detail, especially the multiclass case. * In view of the voluminous nature of many modern datasets, there is a chapter on Big Data. * Has special Mathematical and Computational Complements sections at ends of chapters, and exercises are partitioned into Data, Math and Complements problems. * Instructors can tailor coverage for specific audiences such as majors in Statistics, Computer Science, or Economics. * More than 75 examples using real data. The book treats classical regression methods in an innovative, contemporary manner. Though some statistical learning methods are introduced, the primary methodology used is linear and generalized linear parametric models, covering both the Description and Prediction goals of regression methods. The author is just as interested in Description applications of regression, such as measuring the gender wage gap in Silicon Valley, as in forecasting tomorrow's demand for bike rentals. An entire chapter is devoted to measuring such effects, including discussion of Simpson's Paradox, multiple inference, and causation issues. Similarly, there is an entire chapter of parametric model fit, making use of both residual analysis and assessment via nonparametric analysis. Norman Matloff is a professor of computer science at the University of California, Davis, and was a founder of the Statistics Department at that institution. His current research focus is on recommender systems, and applications of regression methods to small area estimation and bias reduction in observational studies. He is on the editorial boards of the Journal of Statistical Computation and the R Journal. An award-winning teacher, he is the author of The Art of R Programming and Parallel Computation in Data Science: With Examples in R, C++ and CUDA.


Statistical Regression and Classification Related Books

Statistical Regression and Classification
Language: en
Pages: 439
Authors: Norman Matloff
Categories: Business & Economics
Type: BOOK - Published: 2017-09-19 - Publisher: CRC Press

DOWNLOAD EBOOK

Statistical Regression and Classification: From Linear Models to Machine Learning takes an innovative look at the traditional statistical regression course, pre
Modern Multivariate Statistical Techniques
Language: en
Pages: 757
Authors: Alan J. Izenman
Categories: Mathematics
Type: BOOK - Published: 2009-03-02 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as databas
Predictive Analytics
Language: en
Pages: 384
Authors: Ajit C. Tamhane
Categories: Mathematics
Type: BOOK - Published: 2020-10-13 - Publisher: John Wiley & Sons

DOWNLOAD EBOOK

Provides a foundation in classical parametric methods of regression and classification essential for pursuing advanced topics in predictive analytics and statis
An Introduction to Statistical Learning
Language: en
Pages: 617
Authors: Gareth James
Categories: Mathematics
Type: BOOK - Published: 2023-08-01 - Publisher: Springer Nature

DOWNLOAD EBOOK

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast
Classification and Regression Trees
Language: en
Pages: 370
Authors: Leo Breiman
Categories: Mathematics
Type: BOOK - Published: 2017-10-19 - Publisher: Routledge

DOWNLOAD EBOOK

The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and pa