Special Conditions on Maximal Cohen-Macaulay Modules, and Applications to the Theory of Multiplicities

Special Conditions on Maximal Cohen-Macaulay Modules, and Applications to the Theory of Multiplicities
Author :
Publisher :
Total Pages : 238
Release :
ISBN-10 : UOM:39015043228389
ISBN-13 :
Rating : 4/5 ( Downloads)

Book Synopsis Special Conditions on Maximal Cohen-Macaulay Modules, and Applications to the Theory of Multiplicities by : Douglas Hanes

Download or read book Special Conditions on Maximal Cohen-Macaulay Modules, and Applications to the Theory of Multiplicities written by Douglas Hanes and published by . This book was released on 1999 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Special Conditions on Maximal Cohen-Macaulay Modules, and Applications to the Theory of Multiplicities Related Books

Special Conditions on Maximal Cohen-Macaulay Modules, and Applications to the Theory of Multiplicities
Language: en
Pages: 238
Integral Closure of Ideals, Rings, and Modules
Language: en
Pages: 446
Authors: Craig Huneke
Categories: Mathematics
Type: BOOK - Published: 2006-10-12 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.
Determinantal Rings
Language: en
Pages: 246
Authors: Winfried Bruns
Categories: Mathematics
Type: BOOK - Published: 2006-11-14 - Publisher: Springer

DOWNLOAD EBOOK

Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. Their study has attracted many prominent researchers
Mathematical Reviews
Language: en
Pages: 984
Authors:
Categories: Mathematics
Type: BOOK - Published: 2007 - Publisher:

DOWNLOAD EBOOK

A Course in Finite Group Representation Theory
Language: en
Pages: 339
Authors: Peter Webb
Categories: Mathematics
Type: BOOK - Published: 2016-08-19 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and com