Riemann-Roch Algebra

Riemann-Roch Algebra
Author :
Publisher : Springer Science & Business Media
Total Pages : 215
Release :
ISBN-10 : 9781475718584
ISBN-13 : 1475718586
Rating : 4/5 (586 Downloads)

Book Synopsis Riemann-Roch Algebra by : William Fulton

Download or read book Riemann-Roch Algebra written by William Fulton and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: In various contexts of topology, algebraic geometry, and algebra (e.g. group representations), one meets the following situation. One has two contravariant functors K and A from a certain category to the category of rings, and a natural transformation p:K--+A of contravariant functors. The Chern character being the central exam ple, we call the homomorphisms Px: K(X)--+ A(X) characters. Given f: X--+ Y, we denote the pull-back homomorphisms by and fA: A(Y)--+ A(X). As functors to abelian groups, K and A may also be covariant, with push-forward homomorphisms and fA: A(X)--+ A(Y). Usually these maps do not commute with the character, but there is an element r f E A(X) such that the following diagram is commutative: K(X)~A(X) fK j J~A K(Y) --p;-+ A(Y) The map in the top line is p x multiplied by r f. When such commutativity holds, we say that Riemann-Roch holds for f. This type of formulation was first given by Grothendieck, extending the work of Hirzebruch to such a relative, functorial setting. Since then viii INTRODUCTION several other theorems of this Riemann-Roch type have appeared. Un derlying most of these there is a basic structure having to do only with elementary algebra, independent of the geometry. One purpose of this monograph is to describe this algebra independently of any context, so that it can serve axiomatically as the need arises.


Riemann-Roch Algebra Related Books

Riemann-Roch Algebra
Language: en
Pages: 215
Authors: William Fulton
Categories: Mathematics
Type: BOOK - Published: 2013-03-14 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

In various contexts of topology, algebraic geometry, and algebra (e.g. group representations), one meets the following situation. One has two contravariant func
Lectures on the Arithmetic Riemann-Roch Theorem. (AM-127), Volume 127
Language: en
Pages: 118
Authors: Gerd Faltings
Categories: Mathematics
Type: BOOK - Published: 2016-03-02 - Publisher: Princeton University Press

DOWNLOAD EBOOK

The arithmetic Riemann-Roch Theorem has been shown recently by Bismut-Gillet-Soul. The proof mixes algebra, arithmetic, and analysis. The purpose of this book i
Algebraic Curves and Riemann Surfaces
Language: en
Pages: 414
Authors: Rick Miranda
Categories: Mathematics
Type: BOOK - Published: 1995 - Publisher: American Mathematical Soc.

DOWNLOAD EBOOK

In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical in
Lectures on Riemann Surfaces
Language: en
Pages: 262
Authors: Otto Forster
Categories: Mathematics
Type: BOOK - Published: 2012-12-06 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

This book grew out of lectures on Riemann surfaces given by Otto Forster at the universities of Munich, Regensburg, and Münster. It provides a concise modern i
An Undergraduate Primer in Algebraic Geometry
Language: en
Pages: 327
Authors: Ciro Ciliberto
Categories: Mathematics
Type: BOOK - Published: 2021-05-05 - Publisher: Springer Nature

DOWNLOAD EBOOK

This book consists of two parts. The first is devoted to an introduction to basic concepts in algebraic geometry: affine and projective varieties, some of their