Machine Learning with Noisy Labels

Machine Learning with Noisy Labels
Author :
Publisher : Elsevier
Total Pages : 314
Release :
ISBN-10 : 9780443154423
ISBN-13 : 0443154422
Rating : 4/5 (422 Downloads)

Book Synopsis Machine Learning with Noisy Labels by : Gustavo Carneiro

Download or read book Machine Learning with Noisy Labels written by Gustavo Carneiro and published by Elsevier. This book was released on 2024-02-23 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most of the modern machine learning models, based on deep learning techniques, depend on carefully curated and cleanly labelled training sets to be reliably trained and deployed. However, the expensive labelling process involved in the acquisition of such training sets limits the number and size of datasets available to build new models, slowing down progress in the field. Alternatively, many poorly curated training sets containing noisy labels are readily available to be used to build new models. However, the successful exploration of such noisy-label training sets depends on the development of algorithms and models that are robust to these noisy labels.Machine learning and Noisy Labels: Definitions, Theory, Techniques and Solutions defines different types of label noise, introduces the theory behind the problem, presents the main techniques that enable the effective use of noisy-label training sets, and explains the most accurate methods developed in the field.This book is an ideal introduction to machine learning with noisy labels suitable for senior undergraduates, post graduate students, researchers and practitioners using, and researching into, machine learning methods. - Shows how to design and reproduce regression, classification and segmentation models using large-scale noisy-label training sets - Gives an understanding of the theory of, and motivation for, noisy-label learning - Shows how to classify noisy-label learning methods into a set of core techniques


Machine Learning with Noisy Labels Related Books

Machine Learning with Noisy Labels
Language: en
Pages: 314
Authors: Gustavo Carneiro
Categories: Computers
Type: BOOK - Published: 2024-02-23 - Publisher: Elsevier

DOWNLOAD EBOOK

Most of the modern machine learning models, based on deep learning techniques, depend on carefully curated and cleanly labelled training sets to be reliably tra
Machine Learning Methods with Noisy, Incomplete or Small Datasets
Language: en
Pages: 316
Authors: Jordi Solé-Casals
Categories: Mathematics
Type: BOOK - Published: 2021-08-17 - Publisher: MDPI

DOWNLOAD EBOOK

Over the past years, businesses have had to tackle the issues caused by numerous forces from political, technological and societal environment. The changes in t
Machine Learning and Knowledge Discovery in Databases: Research Track
Language: en
Pages: 758
Authors: Danai Koutra
Categories: Computers
Type: BOOK - Published: 2023-09-16 - Publisher: Springer Nature

DOWNLOAD EBOOK

The multi-volume set LNAI 14169 until 14175 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Datab
Machine Learning and Knowledge Discovery in Databases. Research Track
Language: en
Pages: 838
Authors: Nuria Oliver
Categories: Computers
Type: BOOK - Published: 2021-09-09 - Publisher: Springer Nature

DOWNLOAD EBOOK

The multi-volume set LNAI 12975 until 12979 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Datab
Semi-Supervised Learning
Language: en
Pages: 525
Authors: Olivier Chapelle
Categories: Computers
Type: BOOK - Published: 2010-01-22 - Publisher: MIT Press

DOWNLOAD EBOOK

A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems: state-of-the-art algorithms, a taxon