ELUCIDATING THE FUNCTIONAL ROLES OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR [beta]/[delta] IN HUMAN COLON CANCER CELLS.

ELUCIDATING THE FUNCTIONAL ROLES OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR [beta]/[delta] IN HUMAN COLON CANCER CELLS.
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : OCLC:1117328248
ISBN-13 :
Rating : 4/5 ( Downloads)

Book Synopsis ELUCIDATING THE FUNCTIONAL ROLES OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR [beta]/[delta] IN HUMAN COLON CANCER CELLS. by : Xiaohan Wang

Download or read book ELUCIDATING THE FUNCTIONAL ROLES OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR [beta]/[delta] IN HUMAN COLON CANCER CELLS. written by Xiaohan Wang and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Peroxisome proliferator-activated receptor / (PPAR/) is an important regulator in various physiological processes, including lipid metabolism and glucose homeostasis. However, its role in cancer remains controversial. Although PPAR/ is highly expressed in the intestines of normal adults, it has been reported to be up- or down-regulated during colon tumorigenesis. Researchers have not reached a consensus for whether PPAR/ is beneficial, detrimental, or unrelated to colon cancer initiation, survival, growth, and metastasis, in mouse or and human cancer models.One of the first mechanisms described that PPAR/ promotes carcinogenesis was the hypothesis that PPAR/ is a target gene of the oncogenic APC/-CATENIN pathway, a major pathway that is activated by mutations in colon cancer. However, subsequent studies did not observe a correlation between PPAR/ expression and -CATENIN activation, and questioned whether PPARD (gene coding for PPAR/) is a bona fide APC/-CATENIN target protein. Moreover, the functionality of PPAR/ as influenced by the APC/-CATENIN pathway, has not been critically examined to date. Therefore, in the first part of this thesis, the hypothesis that PPAR/ is functionally regulated by the APC/-CATENIN pathway as a tumor-promoting protein was tested. We first investigated whether mutations of the APC/CTNNB1 (-CATENIN) genes or overexpression of functional -CATENIN modulate PPAR/ cellular retention and its response to ligand activation in human colon cancer cell lines. We further examined the effect of ligand activation of PPAR/ using a classic agonist, as well as selective repression of PPAR/ using ligands that stimulate its transcriptional repression activity, on the growth of colon cancer cells with wild-type or mutant APC/CTNNB1. We observed that cytosol and nuclear retention of PPAR/, with or without ligand activation, were not different between cell lines with wild-type or mutant APC/CTNNB1 (gene coding for -CATENIN). Second, target gene activation of PPAR/ following ligand activation occurred faster in cell lines with mutant APC/CTNNB1 compared to a non-mutant cell line, although this difference was not observed with transient overexpression of -CATENIN. Third, ligand activation and selective repression of PPAR/ inhibited growth in several APC/CTNNB1 mutant cell lines but had no effect on the non-mutant cell line. These results suggest that cellular retention and transcriptional activity of PPAR/ are not directly regulated by the APC/-CATENIN pathway. However, the results also suggest that PPAR/ may be enhanced by the presence of APC/CTNNB1 mutations in human colon cancer cell lines.The role of PPAR/ in colon cancer invasion and metastasis also remains elusive. In the second part of this thesis, the influence of PPAR/ activation on malignancy-related features of colon cancer was examined. We hypothesized that ligand activation or selective repression of PPAR/ would inhibit anchorage-independent growth, migration, invasion, epithelial to mesenchymal transition (EMT), and metalloprotease (MMP) activity. Results, some preliminary in nature, showed that selective repression of PPAR/ reduced anchorage-independent growth by inducing apoptosis, inhibited migration, and reduced EMT marker expression, but did not change TNF/TGF-induced MMP activity. By contrast, ligand activation of PPAR/ reduced migration and TNF/TGF-induced MMP activity, but did not affect anchorage-independent growth and EMT marker expression. These results suggest that both ligand activation and selective repression of PPAR/ reduce the malignant potential of colon cancer, although the underlying mechanisms could be different. Combined, results from this study indicate that PPAR/ is not functionally regulated by the APC/-CATENIN pathway. Further, ligand activation or selective repression of PPAR/ using synthetic ligands may modulate colon cancer growth and malignancy-related features, in particular in cells with APC/CTNNB1 mutations.


ELUCIDATING THE FUNCTIONAL ROLES OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR [beta]/[delta] IN HUMAN COLON CANCER CELLS. Related Books

ELUCIDATING THE FUNCTIONAL ROLES OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR [beta]/[delta] IN HUMAN COLON CANCER CELLS.
Language: en
Pages:
Authors: Xiaohan Wang
Categories:
Type: BOOK - Published: 2019 - Publisher:

DOWNLOAD EBOOK

Peroxisome proliferator-activated receptor / (PPAR/) is an important regulator in various physiological processes, including lipid metabolism and glucose homeos
Evidence that Ligand Activation of Peroxisome Proliferator-activated Receptor-[beta]/[delta] (PPAR[beta]/[delta]) Inhibits TNF[alpha]-induced Epithelial-to-mesenchymal Transition by Modulation of SNAIL Expression and Stemness in Human Colon Cancer Cells
Language: en
Pages:
Authors: Kevin Consevage
Categories:
Type: BOOK - Published: 2016 - Publisher:

DOWNLOAD EBOOK

Colorectal cancer patients with relatively higher expression of peroxisome proliferator-activated receptor [beta]/[delta] (PPAR[beta]/[delta]) in their primary
Ligand Activation of Peroxisome Proliferator-activated Receptor Beta Induces Terminal Differentiation and Attenuates Colon Cancer
Language: en
Pages:
The Role of the P1 and P2 Promoter-driven HNF4alpha Isoforms in Cellular Proliferation and Differentiation in Human Colon Cancer and Mouse Embryonic Stem Cells
Language: en
Pages: 282
Authors: Linh My Vuong
Categories: Cell differentiation
Type: BOOK - Published: 2014 - Publisher:

DOWNLOAD EBOOK

Cellular proliferation and differentiation are critical events in normal development and cancer. Despite decades of research, much remains to be learned about h
Cumulated Index Medicus
Language: en
Pages: 1872
Authors:
Categories: Medicine
Type: BOOK - Published: 1999 - Publisher:

DOWNLOAD EBOOK