Measure and Integration

Measure and Integration
Author :
Publisher : John Wiley & Sons
Total Pages : 255
Release :
ISBN-10 : 9780470501146
ISBN-13 : 0470501146
Rating : 4/5 (146 Downloads)

Book Synopsis Measure and Integration by : Leonard F. Richardson

Download or read book Measure and Integration written by Leonard F. Richardson and published by John Wiley & Sons. This book was released on 2009-07-01 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: A uniquely accessible book for general measure and integration, emphasizing the real line, Euclidean space, and the underlying role of translation in real analysis Measure and Integration: A Concise Introduction to Real Analysis presents the basic concepts and methods that are important for successfully reading and understanding proofs. Blending coverage of both fundamental and specialized topics, this book serves as a practical and thorough introduction to measure and integration, while also facilitating a basic understanding of real analysis. The author develops the theory of measure and integration on abstract measure spaces with an emphasis of the real line and Euclidean space. Additional topical coverage includes: Measure spaces, outer measures, and extension theorems Lebesgue measure on the line and in Euclidean space Measurable functions, Egoroff's theorem, and Lusin's theorem Convergence theorems for integrals Product measures and Fubini's theorem Differentiation theorems for functions of real variables Decomposition theorems for signed measures Absolute continuity and the Radon-Nikodym theorem Lp spaces, continuous-function spaces, and duality theorems Translation-invariant subspaces of L2 and applications The book's presentation lays the foundation for further study of functional analysis, harmonic analysis, and probability, and its treatment of real analysis highlights the fundamental role of translations. Each theorem is accompanied by opportunities to employ the concept, as numerous exercises explore applications including convolutions, Fourier transforms, and differentiation across the integral sign. Providing an efficient and readable treatment of this classical subject, Measure and Integration: A Concise Introduction to Real Analysis is a useful book for courses in real analysis at the graduate level. It is also a valuable reference for practitioners in the mathematical sciences.


Measure and Integration Related Books

Concise Introduction to Basic Real Analysis
Language: en
Pages: 253
Authors: Hemen Dutta
Categories: Mathematics
Type: BOOK - Published: 2019-08-12 - Publisher: CRC Press

DOWNLOAD EBOOK

This book provides an introduction to basic topics in Real Analysis and makes the subject easily understandable to all learners. The book is useful for those th
Measure and Integration
Language: en
Pages: 255
Authors: Leonard F. Richardson
Categories: Mathematics
Type: BOOK - Published: 2009-07-01 - Publisher: John Wiley & Sons

DOWNLOAD EBOOK

A uniquely accessible book for general measure and integration, emphasizing the real line, Euclidean space, and the underlying role of translation in real analy
A Concise Introduction to Analysis
Language: en
Pages: 226
Authors: Daniel W. Stroock
Categories: Mathematics
Type: BOOK - Published: 2015-10-31 - Publisher: Springer

DOWNLOAD EBOOK

This book provides an introduction to the basic ideas and tools used in mathematical analysis. It is a hybrid cross between an advanced calculus and a more adva
Mathematical Analysis
Language: en
Pages: 584
Authors: Bernd S. W. Schröder
Categories: Mathematics
Type: BOOK - Published: 2008-01-28 - Publisher: John Wiley & Sons

DOWNLOAD EBOOK

A self-contained introduction to the fundamentals of mathematical analysis Mathematical Analysis: A Concise Introduction presents the foundations of analysis an
Measure and Integral
Language: en
Pages: 289
Authors: Richard Wheeden
Categories: Mathematics
Type: BOOK - Published: 1977-11-01 - Publisher: CRC Press

DOWNLOAD EBOOK

This volume develops the classical theory of the Lebesgue integral and some of its applications. The integral is initially presented in the context of n-dimensi