Riemannian Manifolds

Riemannian Manifolds
Author :
Publisher : Springer Science & Business Media
Total Pages : 232
Release :
ISBN-10 : 9780387227269
ISBN-13 : 0387227261
Rating : 4/5 (261 Downloads)

Book Synopsis Riemannian Manifolds by : John M. Lee

Download or read book Riemannian Manifolds written by John M. Lee and published by Springer Science & Business Media. This book was released on 2006-04-06 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.


Riemannian Manifolds Related Books

Riemannian Manifolds
Language: en
Pages: 232
Authors: John M. Lee
Categories: Mathematics
Type: BOOK - Published: 2006-04-06 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical
Introduction to Riemannian Manifolds
Language: en
Pages: 447
Authors: John M. Lee
Categories: Mathematics
Type: BOOK - Published: 2019-01-02 - Publisher: Springer

DOWNLOAD EBOOK

This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical
Global Riemannian Geometry: Curvature and Topology
Language: en
Pages: 96
Authors: Steen Markvorsen
Categories: Mathematics
Type: BOOK - Published: 2012-12-06 - Publisher: Birkhäuser

DOWNLOAD EBOOK

This book contains a clear exposition of two contemporary topics in modern differential geometry: distance geometric analysis on manifolds, in particular, compa
Riemannian Topology and Geometric Structures on Manifolds
Language: en
Pages: 303
Authors: Krzysztof Galicki
Categories: Mathematics
Type: BOOK - Published: 2010-07-25 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

Riemannian Topology and Structures on Manifolds results from a similarly entitled conference held on the occasion of Charles P. Boyer’s 65th birthday. The var
Differential and Riemannian Manifolds
Language: en
Pages: 376
Authors: Serge Lang
Categories: Mathematics
Type: BOOK - Published: 2012-12-06 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

This is the third version of a book on differential manifolds. The first version appeared in 1962, and was written at the very beginning of a period of great ex